

Turnstile -- A Novel Encryption Scheme
M. Weir1

1: Ampex Data Systems Corporation, Hayward, California, USA

Abstract: The need for encryption throughout the
telemetry industry has become ubiquitous. With
commercial and governmental interests to protect, both
data-at-rest (DAR) and data-in-transit (DIT) is now
essential.

However, encryption is like seat belts and crash helmets: a
nuisance until that moment when you really need the
protection! The challenge for effective encryption, then, is
a management scheme for the encryption keys that imposes
as small of an additional workload on the operations staff.

Turnstile is an encryption scheme that combines tried,
tested and trusted algorithms in such a way as to make
recordings inaccessible even if an adversary has full access
to, and control of, the test article. This allows engineers to
configure a system with full encryption capabilities without
having to "re-key" the unit regularly.

By employing existing algorithms, Turnstile benefits from
the quality and trustworthiness of those algorithms and
certifications (such as FIPS 140 or Common Criteria).
Turnstile can be applied both to data-at-rest and data-in-
transit applications with small variations.

Keywords: Cyber Security, Encryption, Test Data
Acquisition

1. Introduction

There are few fields of data processing, be it industrial,
commercial or consumer, where the idea of encryption of
data at rest is not anticipated or expected. However, even
when the capability is present, it is frequently not engaged.

This paper explores the reasons why data at rest encryption
is not as widely used as one might hope or expect, and thus
the context behind the Turnstile Encryption Scheme
developed by Ampex Data Systems Corporation
specifically to help address those issues and make data at
rest encryption a less intrusive technology with the required
levels of security and integrity.

Note: to the extent Ampex has intellectual property rights
in the Turnstile scheme, RAND licenses are available.

2. The Problem Space

An assessment of any variety of data protection approach
fundamentally must begin with characterizing what,
precisely, the threats are, and how a specific approach
might acceptably address those threats.

For data-at-rest encryption applications, the objective of
the encryption is obvious: the technology should prevent
unauthorized access to the stored data. But there are

multiple scenarios in which the threat of unapproved
individuals getting to that data might arise, and not all of
them are applicable to every project, nor are they equally
probable or do the result in the same consequences is the
access is obtained.

The unauthorized access attempt could be accidental or
malicious, targeted, or opportunistic. In general, accidental
access can be benign (e.g., a fellow employee getting
access to data they should not have been able to see), but
of course it is entirely possible that an accidental leak might
then be subsequently exploited by a malicious actor.

When it comes to malicious attacks, the typical perpetrator
may be seeking competitive advantage commercially, or
even on the national level. And that creates a necessity for
protection both for truly sensitive data as well as for data
that can be used to assemble information of value.

And of course, with the general consolidation of the
aerospace industry, the line between military and civilian
vehicles is less distinct than it once was. This has the net
effect of spreading attacks; for example, an unfriendly
nation state may design an attack against what they
perceive as a military program, but which is actually seen
as a civilian platform by its developer, and therefore
potentially less well protected.

These scenarios are described below:

2.1 Total Loss of Control.

When data at rest protection is discussed, it is usually this
sort of threat that people consider: an entire operational
system, including on-board storage, is lost.

In this situation, all the hardware and software that’s
needed to access the data is available; the system was
working normally prior to loss, and so the design of the data
at rest solution, with particular focus on key retention, is
the barrier protecting the data!

2.2 Data at Rest in Transit.

While this may seem like a contradiction in terms, this
scenario covers situations where media is in transit between
the recording system and the exploitation system.

The key factor in this scenario, unlike the previous one is
that the media is “bare”: to access the sensitive information,
additional hardware will be required. With commodity
media, this may not present an adversary with much, if any,
of a challenge, but this situation represents the most
prevalent one, as it includes lost, abandoned, or discarded
media.

2.3 Recorder System Information Assurance Protection.

In order to protect the integrity of a subsystem, it is
necessary to protect all points of entry. While it may not be
a particularly obvious vulnerability, an adversary can use
removable media as a mechanism to transport malware to
a system (in much the same way as attackers use removable
media – CDs and thumb-drives, for example – to infect
PCs).

This can be prevented by encrypting the media. If a host
(i.e., the on-vehicle recorder) refuses to mount unencrypted
storage, and the keys for the encryption are well protected,
then only trusted parties can use that media to transfer data.

2.4 Data Validation and Authentication.

This scenario is the reverse of the previous one: if only
systems that have the (protected) key can mount the media,
then it can be asserted that the media contains valid,
authenticated data that cannot have been forged.

This provides a useful “chain of custody” mechanism for
data being used for official purposes (e.g., criminal
prosecution).

3. Key Handling for Encryption on Test Vehicles

With the widespread standardization of encryption
algorithms (see below), the process of encrypting the large
amounts of data involved (“bulk data”) is pretty much a
solved problem. But the challenge of managing keys –
typically loading, storing and protecting them, but also
generating and destroying them remains; it is the handling
of keys that is the major hurdle in designing and applying
data-at-rest encryption.

The simplest form of key handling is simply to provide a
channel through which an operator is expected to send the
keying information. This channel may be something like a
TCP/IP socket over Ethernet, or as simple as a serial port;
the distinguishing feature here is that the host system (i.e.,
the system trying to unlock the encrypted data-at-rest
media) will suspend operations pending the delivery of the
key.

Obviously, in some way this just pushes the problem out of
host system: instead of the host unit needing to address
secure key storage, whatever it is that provides the keys
through the channel must achieve the same functionality.

It should be noted that any key handling channel may pose
a security vulnerability of some kind; this point is usually
addressed by either having encrypted channels (e.g., by
using a network VPN solution) or by “wrapping” keys, i.e.,
encrypting the key itself, or both. The passwords or keys
for those operations introduce their own key handling
issues, but in general no new types of challenges.

The next type of key handling is where the host system
contacts another system on the vehicle and requests the
keys from there (often termed the “root of trust”). This
request would be issued every time the keys are required.
The difference between the first scenario and this one is
that authentication of the host to the key store will almost
inevitably be required, as any store will need confidence

that it’s not handing out sensitive information (the keys) to
the wrong client!

Again, this is another example of pushing the problem
elsewhere, but architecturally having a centralized secure
key store is often required or desired in an overall system-
of-systems design.

A variation on this scheme is the use of key dongles,
sometimes called crypto ignition keys (CIKs): a physical
item is plugged into the host system and the keying material
is read off the dongle. So instead of a centralized key store,
you have a localized one. Dongles / CIKs tend to use simple
serial protocols (SPI or I2C, for example) or USB, and are
entirely dependent on the host system pulling the data out
of them.

However it is that the keys get transferred to the host
system, two additional capabilities frequently are required:
local storage, and destruction.

The simplest approach is to store the key in volatile
memory (RAM); when power fails, the key disappears. The
complication lies in cases where it is necessary for the key
to survive power cycles – either to recycle a potentially
misbehaving system, or as a characteristic of the vehicle
(e.g., switching from one generator/alternator to another)
or as part of a normal CONOPs where a vehicle is prepared
significantly prior to an operation, and then gets shutdown
until start time.

These all dictate some kind of power hold-up circuitry, or
use of non-volatile memory, or both.

For power hold-up, the obvious issue is the duration
required. “Short” durations can use supercapacitors, which
have the significant benefit that they will get exhausted, at
which point there will be no power to preserve the sensitive
keying information, so it will evaporate as soon as power
fails.

For longer durations, supercapacitors become impractical:
while it’s certainly possible to build an arbitrarily large
capacitor bank, the process of charging complicates the
design: one must limit inrush current to within acceptable
bounds, and additionally calculate the relationship between
charge time and hold-up capability.

The alternative to supercapacitors is of course a battery.
Even surmounting the (legitimate) bias against batteries for
maintenance and safety reasons, batteries add an additional
complication: an active watchdog of some kind is required
to ensure that the key doesn’t last too long, because unless
one’s using rechargeable cells (with an even stronger
legitimate bias against), the battery has to be sized to
support the application across multiple power failures;
once the battery is exhausted, the system is impaired!

Of course, the challenge can be made easier by splitting the
recording subsystem in two: the recorder proper, and a
much smaller co-processor that acts as a key store; so long
as power is maintained to the key store, the keying
information can be preserved without having to power the
whole recorder. Typical key store systems might be based
on a microcontroller device, using common chip-to-chip
interconnects like I2C, RS-232/422, or USB.

The alternative to storing keying information in volatile
memory is, of course, to use non-volatile storage. The
obvious problem with this is that the if the recording device
fails (e.g., is involved in a crash) then the non-volatile
memory will retain everything needed to extract the
encrypted, protected information, thereby defeating the
whole purpose of encryption in the first place!

To avoid this problem, the obvious solution is to use
“secure” storage devices, like Trusted Platform Modules
(TPM). The concept behind these devices is that they are
secure crypto-processors that help with actions such as
generating, storing, and limiting the use of cryptographic
keys. Many TPMs include multiple physical security
mechanisms to make it tamper resistant, and malicious
software is unable to tamper with the security functions of
the TPM.

Unfortunately, the drawback to the use of these sorts of
coprocessor device is that they have to be responsive to the
host system, so that when the host starts up, it can extract
the necessary keys to unlock the media. The “risk window”
can be narrowed by time-based criteria, under which the
crypto-processor purges itself once a given interval has
elapsed. Of course, if the reference time is derived from a
regular system clock, that can be defeated by simply
resetting the date and time, so a secure system would
typically use a non-resettable counter circuit to trigger the
key purge when a particular value is reached.

In summary, protecting keys so that they survive power
cycles but are not vulnerable to exfiltration in such a way
as to defeat the purpose of encryption is a hard challenge to
solve. It would be better, then, to have a sort of “write only”
storage device, where the data cannot be recovered in the
field, only back at base!

4. Encryption Technology

Encryption can be broken into two types of algorithm:
those which use the same key for both reading and writing
(“symmetric” algorithms), and those that use different keys
to encrypt and decrypt (“asymmetric” algorithms).

For symmetric encryption, also known as “block ciphers”,
as of 2023 this is almost exclusively the Advanced
Encryption Standard (AES), codified by FIPS 197 [1].

The reasons for this near-universal adoption are clear: AES
is a published algorithm developed the Belgian
cryptographers Vincent Rijmen and Joan Daemen, which
was adopted by the US National Institute for Science and
Technology (NIST) in 2001. As such, it has been validated
by the global community’s scrutiny of the algorithm’s
mathematical underpinnings, and a given implementation
should be certified by the NIST Cryptographic Algorithm
Validation Program (CAVP) and is therefore “correct”.

1 The standard is generally known as FIPS 140. The number after
the dash is the edition number. FIPS 140-3 superseded FIPS 140-2
in March 2019.

For asymmetric encryption (those using different encrypt
and decrypt keys), there’s a split between the venerable
RSA algorithm (named after its creators, Messrs. Rivest,
Shamir, and Adleman), and Elliptical Curve Cryptography
(ECC); while the mathematics underpinning the two are
very different, they can be considered functionally
interchangeable in most cases. These too are codified by
standards (FIPS 186 “Digital Signature Standard” [2]) and
validated by the global community. Formal NIST
certification tends to be wrapped up with the functionality
for which these technologies are most often used (“key
exchange” and identity verification), but a broader-scope
certification program like FIPS 1401 “Security
Requirements for Cryptographic Modules” [3] will also
certify the asymmetric algorithm(s).

The advantage of asymmetric keys for test vehicle
applications (and others) is clear: by loading only the
“encryption key” (and not the “decryption key”) on board,
the system cannot recover data that has been written.
However, there are challenges…

5. Encryption in Operation

Whichever type of encryption (symmetric or asymmetric)
is used, the basic operations are the same: chunks of data
are fed into the algorithm and the enciphered output
emerges. However, the size of those chunks is limited: for
AES the chunks are always 16 bytes (128 bits) long, while
for the asymmetric variety the chunk length to be encrypted
should not exceed the key size.

This leads to what can be referred to as the “repeating data
issue”: encrypting two chunks with the same key will result
in the same output. And since the chunks are quite small,
the situation shown in Figure 1 will inevitably occur.

Figure 1 shows two AES “modes” defined by NIST as
SP800-38 “Recommendation for Block Cipher Modes of
Operation” [4]; the first, Electronic Code Book (ECB)
mode, simply repeatedly encrypts each 16-byte block with
the same key, and is obviously unsuited to plaintext with

Figure 1 Repeating Block Issue

repeating patterns. The second, Counter (CTR) mode, splits
the message into a numbered succession of blocks, and
merges the encrypted version of the plaintext with an
encrypted version of the numbered counter, and in so doing
changes the effective key being used to encrypt each block
of the plaintext.

An alternative to Counter mode, the Galois/Counter mode
(defined by NIST SP800-38D [5]) can be used, which adds
a extra layer of protection against corruption of the
recording or tampering, although it should be noted that
tampering with an encrypted file can often be easily
detected anyway, as the alternations can only be made
“blind” and so will likely not align with e.g., packet
boundaries in the encrypted data.

Unfortunately, the approach of using these sorts of modes
to vary the “effective key” for each block cannot work for
asymmetric keys, as each potential “effective encryption
key” must have a related decryption key, and the
relationship between the two is, by definition,
mathematically “extremely hard” to derive.

To summarize, then, symmetric algorithms (i.e., AES) with
appropriate “modes” work well large volumes of data but
suffer from the problem that if a system has the encryption
key, they also have the key needed to decrypt. And on the
other hand, while asymmetric keys are an elegant solution
to the key handling challenges, they are not much use for
applications where more than a few bytes must be
encrypted.

6. Turnstile

The concept behind the Turnstile Encryption System is to
use both a symmetric and an asymmetric algorithm in
concert.

Turnstile is designed for file or stream encryption, as
opposed to “full disk” encryption. This permits the use of
multiple keys and algorithms. Turnstile is also not suited to
applications with huge numbers of files or “read-mostly”
systems like NAS devices, since (a) each file (or small
group of files) is separately encrypted, and (b) by design,
Turnstile prevents the reading of a file.

Turnstile doesn’t implement the encryption operations per
se, relying instead on other implementations, which allows
the use of FIPS 140 and/or Common Criteria certified
solutions. Instead, Turnstile manages creates and
Ephemeral File Encryption Keys (EFEKs), which are then
used for bulk data encryption. In other words, it could be
argued that Turnstile operates above FIPS 140, without
reducing the “goodness” that a FIPS 140 implementation
provides.

That bulk data encryption process will be (typically) be
performed by AES with a suitable mode such as Counter
mode using an EFEK. The EFEK is then encrypted with an
asymmetric algorithm (typically ECC, but possibly RSA),
and stored alongside the bulk data files.

Turnstile functions by generating a key pair for use with
the asymmetric algorithm. One half of the pair, dubbed the
“write key” or the “public key” (after it’s similarity to

Public Key Infrastructure schemes) is transferred to the test
article, while the other half, the “read” or “private” key, is
retained securely, for example in the control room. The
“write” key is not particularly sensitive: an adversary
posing that key could possibly create forged data files but
could not manipulate or access the data in authentic ones.

6.1 Random Number Generation.

The strength of the encryption on the bulk data files comes
down to the strength of the EFEK, so it is essential that
Turnstile use a robust and well-understood approach to the
EFEK creation process. As with all good keys, the EFEKs
are random bit strings (typically, a 256 bit string of random
“0”s and “1”s).

Perhaps paradoxically, cryptographically random bit
generation (RBG) usually involves two elements: a source
of entropy, often referred to as a True Random Number
Generator (TRNG) and a Deterministic Random Bit
Generator (DRBG), also known as pseudo-random number
generators.

The TRNGs typically employed by encryption systems are
typically implemented by electronics phenomena, such as
thermal noise.

One might ask why the DRBG is required if one has a
TRNG? The simple answer is that TRNG implementations
tend to be limited in the number of random bits per second
that can be produced. The use of a DRBG thus “smooths”
the output of the TRNG so that bursts of requests for
random numbers (by applications, in this case Turnstile)
don’t overload the TRNG and skew the randomness of the
output. It is also true that proving the randomness of a
TRNG across all potential operating conditions is hard, so
using a DRBG provides slightly greater confidence across
boundary conditions, such as temperature or power supply
brownouts.

The approved methods for the use of entropy sources and
the DRBG algorithms are codified in NIST SP 800-90A
Rev.1 “Recommendation for Random Number Generation
Using Deterministic Random Bit Generators” [6], SP 800-
90B “Recommendation for the Entropy Sources Used for
Random Bit Generation” [7] and the draft SP 800-90C
“Recommendation for Random Bit Generator (RBG)
Constructions (3rd Draft)” [8].

6.2 EFEK Storage.

Once the EFEK has been generated, it is encrypted using
the “write” / “private” key. Typically, there will be some
additional data encrypted alongside the EFEK, which
provides different types of assurance, such as detecting
when the system is booted in order to flag unexpected
resets that might indicate tampering.

The encrypted EFEK and that additional data, known
collectively as the Encrypted Key Control Block (EKCB)
is then stored alongside the bulk data file that is encrypted
with that EFEK.

The method, and indeed the location, by which the EKCB
is stored is unimportant: it could be prepended to the bulk
data file, it could be written in a separate “sidecar” file,

saved in a database or even written to separate media. The
only requirement is that the EKCB data be associated with
the bulk data file, which is straightforward with prepending
the data, but requires a little extra work with the other
methods.

Once the bulk data file is completed (i.e., when the file is
closed), the EFEK is purged for memory. The only place it
can be obtained is now from the EKCB.

For best security, the system will periodically close a
recording file, discard the EFEK, and create a new file with
a new EFEK and EKCB.

6.3 Decrypting the Bulk Data Files.

Extracting the data from the recording files requires first
recovering the EFEK from the EKCB. This requires the
“read” or “private” key.

Since that key is simply not loaded on to the test article, an
adversary taking control of the recording system just
doesn’t have the necessary pieces to decrypt the data files.
As long as the asymmetric algorithm and the read key are
secure, the bulk data is secure.

6.4 Turnstile Applications for Streaming.

Up to this point, this paper has been considering the
challenges of encryption mostly from a data-at-rest
perspective. However, Turnstile can be equally relevant to
streaming telemetry.

The process of generating the asymmetric key pair and the
EFEKs is identical to that used for data-at-rest applications,
as is the concept of the EKCB. Obviously, instead of
writing files encrypted with the EFEK, the telemetry
stream is encrypted and transmitted, but otherwise the
design mirrors the data-at-rest approach.

The difference lies in what the test article does with the
EKCB: rather than storing it, it must be transmitted
“alongside” the streaming data. This can be accomplished
using either a packetization scheme on the data link, using
a header bit to signify whether the data is an EKCB or
encrypted data, or an out-of-band channel operating in
parallel.

7. Conclusion

Key handling for data encryption is a hard problem to solve
when controlled key persistence is required. Turnstile
simplifies the process by creating a scheme in which the
only keying data stored on a vehicle is not sensitive,
because it cannot be used to decrypt previously written
data.

Turnstile doesn’t work for all applications, but for video
and instrumentation recordings (“Chapter 10” and the like),
it provides an elegant solution for secure protection of
sensitive data.

 8. References

[1] National Institute for Standards and Technology,
FIPS 197 Advanced Encryption Standards, 2001.
https://csrc.nist.gov/publications/detail/fips/197/final

[2] National Institute for Standards and Technology,
FIPS 186-5 Digital Signature Standard, 2023.
https://csrc.nist.gov/publications/detail/fips/186/5/final

[3] National Institute for Standards and Technology,
FIPS 140-3 Security Standards for Cryptographic
Modules, 2019.
https://csrc.nist.gov/publications/detail/fips/140/3/final

[4] National Institute for Standards and Technology,
SP 800-38A, Recommendation for Block Cipher Modes
of Operation: Methods and Techniques, 2001.
https://csrc.nist.gov/publications/detail/sp/800-38a/final

[5] National Institute for Standards and Technology,
SP 800-38D, Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC,
2007.
https://csrc.nist.gov/publications/detail/sp/800-38d/final

[6] National Institute for Standards and Technology,
SP 800-90A Rev. 1, Recommendation for Random
Number Generation Using Deterministic Random Bit
Generators, 2015.
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-
1/final

[7] National Institute for Standards and Technology,
SP 800-90B, Recommendation for the Entropy Sources
Used for Random Bit Generation, 2018.
https://csrc.nist.gov/publications/detail/sp/800-90b/final

 [8] National Institute for Standards and Technology,
SP 800-90C (Draft), Recommendation for Random Bit
Generator (RBG) Constructions (3rd Draft), 2022.
https://csrc.nist.gov/publications/detail/sp/800-90c/draft

9. Glossary

AES: Advanced Encryption Standard
CAVP: Cryptographic Algorithm Validation Program
CIK: Crypto Ignition Key
CMVP: Cryptographic Module Verification Program
CTR: Counter
DAR: Data at Rest
DIT: Data in Transit
DRBG: Deterministic Random Bit Generation
ECB: Electronic Code Book
ECC: Elliptical Curve Cryptography
EFEK: Ephemeral File Encryption Key
EKCB: Encrypted Key Control Block
FIPS: Federal Information Processing Standard
I2C: Inter-Integrated Circuit
NIST: National Institute for Science and Technology
RAM: Random Access Memory
RAND: Reasonable and Non-Discriminatory
RBG: Random Bit Generator
SPI: Serial Peripheral Interface
TPM: Trusted Platform Modules
TRNG: True Random Number Generator
USB: Universal Serial Bus
VPN: Virtual Private Network

	Turnstile -- A Novel Encryption Scheme
	1. Introduction
	2. The Problem Space
	3. Key Handling for Encryption on Test Vehicles
	4. Encryption Technology
	5. Encryption in Operation
	6. Turnstile
	7. Conclusion
	8. References
	9. Glossary

