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Abstract: This paper explores the potential for the use of 
airborne content analytics in both the Test and Evaluation 
(T&E) and production/operational environments. Using 
machine learning and neural networks to examine large 
datasets for potentially interesting events can dramatically 
reduce the time taken to identify anomalies, and represents 
a significant part of the development of the capabilities 
required by innovations such as “self-driving cars.” 
Development of parallel processing solutions using 
components originally designed for graphics display 
(“General Purpose Graphics Processor Units”, or GPGPU) 
has provided processing resources that promise to make 
machine learning systems a viable component of a space-
(and power-)constrained on-board content analytic system. 
Examples of applications for such systems are discussed, 
focused on those for which a GPGPU with a few hundred 
cores might be practical.  
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1. Introduction 

Instrumentation platforms are subject to their own variant 
of “Moore’s law”, the observation by Intel’s Gordon 
Moore that transistor density will double every two years. 
Over the last three decades data storage bandwidth has 
increased from tens of Megabytes/sec to thousands of 
MB/sec while storage density has increased from the tens 
of Gigabytes to tens of Terabytes – the latter drive 
particularly by the direct application of Moore’s Law to 
flash memory devices. The disparity between the increase 
in data rates and the increase in storage density effectively 
means that it can take an order of magnitude longer to 
process the resultant data sets. The sensors and data 
systems are continuously evolving to produce and process 
higher data rates for improved resolution and fidelity. As 
the data sets get larger, there is an increased need to provide 
useful context and structure to the data. Several 
mechanisms, such as multicasting, have been employed to 
attempt to improve data flow, but most suffer from a lack 
of “understanding” of the relative importance of any given 
piece of data. 
Frequently cited as a probable cause for human induced 
error is “too much information.” Momentary distractions, 

longer work hours (and flight durations) and multiple data 
feeds all serve to reduce each human operator’s available 
attention and ability to identify a pattern in a data stream. 
Often, the data sets required to detect are either large by 
nature or potentially so but unknown ahead of time. In a 
test, instrumentation or collection environment, it is 
generally impossible to predict when an event of interest 
will occur, as the value of the data is unknown before it is 
analysed. However, as the data sets get larger, and as 
sensors and data acquisition systems get more capable, the 
time required to move the data and analysed the data 
increases. 
At the same time, the demand for instant access to pertinent 
information (however defined) is omnipresent. For 
example, the evolution of flight test data processing at 
Boeing has been continually toward real-time analysis. The 
original 1969 747-100 flight test regimen was almost 
entirely dependent on post-processing; more often than not, 
that post-processing consisted of engineers – possibly on-
board the aircraft – looking at strip charts. A contemporary 
flight test regimen (as used for the 747-8 Intercontinental, 
42 years later) requires flight test information be 
instantaneously available on the ground while the test 
article is still in flight 
Numerous mechanisms have been implemented over the 
years to work through these problems. Some solutions 
target the reduction of the volume of data produced in the 
acquisition phase (e.g. by processing at point of capture), 
while others focused instead on providing metadata 
alongside the acquired data in order to facilitate 
downstream processing. As no single solution will ever 
work for all cases, a data acquisition system will naturally 
integrate multiple techniques to manage the data. 
Fortunately, advances in chip development have resulted in 
extraordinary processing power that can now be 
ruggedized (reasonably easily) and then integrated into a 
data acquisition system for harsh environments. The 
improved processing power can be directed to manage the 
data in real-time while the data is being acquired. 
This data management potentially includes: reducing the 
size of the acquired data, improving the description of the 
acquired data (adding metadata), and/or validating the 
acquired data to produce a summary data set. In addition to 
traditional rule-based data validators, recent developments 
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in machine learning technology are highly applicable to 
assisting with these problems. Using processors originally 
designed to be Graphics Processing Units (GPUs), highly-
parallelized accelerated computing is now being utilized to 
realize practical neural networks capable of performing 
useful data analysis in a timely fashion. 
For example, the Intel® Core™ i7-7567U Processor has, 
in addition to its two standard “x86” cores, forty-eight 
integrated GPU cores (“execution units”) and dedicated 
graphics chips, which can contain thousands of GPU cores 
(the nVidia “Pascal” family has devices with 
approximately 3,600). 
Ideally, in an environment where the value of the acquired 
data is unknown ahead of time but the cost is fixed, it is 
desirable to analyze the data at acquisition time to 
determine the value. Valuable data can generate meta-data 
tags or system events, anomalous data can generate an 
error, and other data decimated or discarded. A traditional 
instrumentation recorder with integrated content analysis 
capabilities can: 
 Reduce the amount of unnecessary/ erroneous data. 
 Reduce the post-processing requirements. 
 Reduce the time required to access data of interest. 
 Improve diagnostic capabilities for fault tolerance. 

 

2. Content Analytics 

Content Analytics refers to the ability, in real-time, to make 
decisions based on the content of the data being acquired. 
One of the differences between a dedicated instrumentation 
recorder and a generic storage device is that the 
instrumentation recorder provides the functionality to add 
metadata to the data streams it receives and stores the 
combination in such a way as to enhance data reproduction 
and extraction in real-time. Examples of auto-generated 
metadata include time stamps and timing information, as 
well as fault information for out-of-band data. Traditional 
instrumentation recorders have frequently lacked the 
bandwidth to store and process high-volume, high-speed 
data streams. The traditional instrumentation recorders  
typically rely on externally generated and supplied 
metadata for identifying data of interest, and in some cases 
requiring operator intervention in the acquisition or post-
processing phase; at its simplest, perhaps pushing an 
“Event Marker” button. The goal of Content Analytics, 
then, is to provide that meaningful metadata as well as an 
intelligent control interface together with useful 
diagnostics while retaining the core functionality, so that 
overall the system provides enhanced data extraction, 
reproduction and archiving. 
New tools for machine learning are enabling a wide range 
of capabilities that are enabling significant improvement 
towards meaningful content analytics on a wide variety of 
new platforms. As the cost of a useful parallel processor 
has fallen (driven, as it is, by the demand for ever more 
realistic graphics which demand ever more powerful 
engines), there has been a significant acceleration in the 
development of machine learning technology. The 

tremendous investment in self-driving cars (and the similar, 
but less dramatic driver assistance tools) has reaped a 
number of hardware and software tools for implementing 
and exploiting neural network architectures. The GPUs 
provide capabilities to parallelize both large numbers of 
floating point and matrix operations for which traditional 
CPUs (Central Processing Units) are not well optimized. 
Separated from the “video card” role, these devices become 
sophisticated co-processors, or GPGPUs (General Purpose 
Graphics Processing Units ). The increased performance 
provided by advancements in GPU technology makes 
neural networks practical for a wide range of new 
applications. In other words, the “compute density” of 
modern GPU’s, functioning as GPGPUs have made long-
established machine learning algorithms practical. And 
using machine learning tools to analyze data in real-time 
allows for sophisticated data-based decision capabilities. 
Neural networks are designed for pattern recognition, 
which is a technique applicable to a large number of 
problems, including predicting future events and 
correlating historical ones. In an environment where the 
structure and content of acquired data types are well 
understood, neural networks can be a powerful tool for data 
analysis. But in an environment where the acquired data 
structure is not well understood, neural networks can 
provide useful diagnostic and validation capabilities.  
Neural networks are model-based. The operating principle 
is to compare input data to a hidden model that is created 
in the training process to see if any previously learned 
patterns exist in arbitrarily complex data sets. By 
automating the modeling process, a GPU accelerated data 
acquisition system can utilize multiple machine learning 
algorithms. 
Unsupervised algorithms (such as Hebbian Learning, Self-
Organizing Maps or the Apriori Algorithm) may be 
appropriate for diagnostics, or control and data validation 
based on historical system behavior, while supervised 
machine learning algorithms such as Decision Trees, 
Random Forests, or other “Classifier learning” technique 
that may be more appropriate for tagging or otherwise 
identifying data of interest 
 

3. Reduction / Validation 

The first step in managing large data sets is managing the 
physical size of the data set. That is, eliminating invalid, 
duplicated, counterfeit or otherwise unwanted data. Typical 
data acquisition systems provide mechanisms for 
controlling the flow of data as well as mechanisms for 
validating the data path. 
A prerequisite to data validation is “source validation.” 
Data must be received from a valid, known source to have 
any value. For example, a network-based acquisition 
system would include network security, e.g. a firewall, to 
validate the data path as well as the control path. The data 
itself may then be validated for structure and content. In a 
GPGPU-accelerated data acquisition system, the validation 
of both the data path and the control path can be improved 
– the characteristics used to define the overall data source 
and data sets can be analyzed in great detail. For example, 
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the traffic patterns can be monitored and anomalies 
detected, so that data received through an anomalous 
control route or at an anomalous rate might signal the 
existence of a significant event or a more serious error.  
For data in which the structure and content can be easily 
modeled, there are additional mechanisms for data 
validation. For example, consider an IRIG 106 Chapter 11 
Analog packet data format, where the range and precision 
of an A/D converter data source is known at (and before) 
acquisition time. In this case, additional characteristics 
such as variance, rate of change, or absolute limits can be 
modeled and identified and thus used to validate the input 
data stream. 
Another classic example is the surveillance camera 
application; in this case GPGPU-accelerated data analysis 
is performed – in real-time – for change detection or object 
recognition to further validate the video data and so assign 
a value to the data. 

4. Prioritization 

The primary goal of content analytics is to determine the 
value of acquisition data in real-time. The value of the data 
depends on multiple factors, including the (calculated) 
validity of the data and application specific characteristics. 
The goal is to provide a description of the data so that a 
weighted “value” metric can be assigned to the data. That 
metric can then be used to perform some subsequent action. 
For example, the data could be stored or not, pre-processed, 
forwarded to an external system, or used to trigger an alert 
to an operator or another part of the data system. More 
importantly, assigning a weighted value to data at 
acquisition time will greatly improve the data extraction 
and down-stream processing capabilities by providing a 
mechanism for identifying some, if not all, areas of interest 
in the data set. Autonomous, GPGPU-accelerated data 
acquisition systems are able to identify areas of interest by 
comparing incoming data to known data patterns of 
interest.  
The secondary objective is to provide a model for the data 
set. This model is developed continuously, based initially 
on historical data and then with feedback from the 
extraction and analysis process. Maintaining a data model 
throughout the life cycle of the data set provides a means 
for continuous improvement of the description of the data 
set. The weighted value of a data set can be refined based 
on application specific areas of interest. 
 

5. Diagnostics 

Diagnostics is a core component of any data acquisition 
system. As more data is acquired by autonomous systems, 
diagnostics becomes more critical. The ability to perform 
diagnostics based on data content can significantly improve 
the fault detection and fault recovery processes. By 
enhancing the descriptive characteristics of both erroneous 
and valid data, common failure modes can be recognized.  
For example, a disconnected strain gauge may produce an 
“out of range” signal, while an incorrectly installed gauge 
might produce fixed data in the valid range. 

Or perhaps a video sensor which could recognize a lens cap 
could generate a “lens cap fault” or even perform an 
appropriate corrective action. It is not necessary to know 
the structure and content of acquisition data to perform 
behavior-based fault analysis. 
Consider, for example, the binary sequence 0xFFFF, 
0x000, 0x001. If the values are actually 16-bit signed 
integers (-1, 0, 1), they represent a small variance. But if 
the sequence was actually unsigned values (65535, 0, 1), 
then the variance is large. A neural network, however, can 
be “trained” to recognize that pattern as a low variance 
signal. GPGPU-accelerated systems can also offer insight 
into traffic flow patterns that cannot be easily predicted 
ahead of time, but which can then be used to develop 
simulated data environments.  
More importantly, providing improved diagnostics can 
significantly improve the resiliency of the overall system, 
by providing real-time diagnostic information. Content 
Analytics provides a greater visibility into the overall 
health of the data acquisition system. The increased 
visibility provides improved fault detection and 
diagnostics. 
Improved diagnostics can equally be used to automate fault 
recovery processes. For example, a data acquisition system 
with redundant inputs can implement an automatic fail-
over based on the quality of the data. 
Platform-based diagnostic information, as metadata, can 
improve the downstream processing by providing 
additional quality of data information. For example, 
identifying the location and source of anomalous data can 
differentiate processing errors from acquisition errors, or 
determine the appropriate data recovery scheme. 
Improving the visibility of the overall system improves the 
opportunity to provide meaningful diagnostics which in 
turn provides the opportunity for improved resiliency of the 
data management process. 

6.  Implementation 

 Implementing a system capable of supporting advanced 
content analytics is a primarily software-centric solution. 
Software components are added to existing data acquisition 
systems to take advantage of GPGPU-accelerated 
processing and the available processing power available in 
modern computing platforms. 
The overall implementation can be separated into three key 
components: 

(1) The data validation and diagnostic component, 
(2) The data identification and tagging component, 
(3) The data model creation and management 

component. 
The data validation and diagnostic component provides all 
of the platform specific functionality. This includes the 
control path and data path validation, signal validation and 
traffic pattern monitoring. The data model used for this 
component is based on the data flow through the system; it 
is responsible for identifying and allocating available 
system resources, identifying anomalous input or system 
behavior and providing diagnostic information for problem 
resolution and recovery. This software is primarily event-
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based, the component will respond to external triggers, 
generate fault and data flow events and detect anomalous 
control or data path behavior.  
The data identification and tagging component provides all 
of the application-specific functionality. That is the 
functionality required to assign value to validated data. The 
data model used by this component is based on application 
requirements for identifying areas of interest. The data 
identification and tagging component also includes the 
software for data transformation between known data or 
encoding formats. The primary function of this component 
is to provide a rich description of the data set in the form of 

meta-data to facilitate data management. 
For example, Figure 1 shows several “areas of interest” in 
a video frame, together with the confidence level that the 
area matches the target description; in this case, green 
designators are overlaid on targets that have a confidence 
level in excess of 95%. Simultaneously, the location of this 
particular frame is indexed, so that an analyst can jump to 
the sections of the video that have the greatest probability 
of containing objects of interest. 
A secondary function of this component is to improve data 
extraction and post-processing by pushing some of the 
functionality for tagging and classifying significant data in 
the acquisition process. As such, this component includes 
functionality that can be deferred to the post-processing 
stage. 
The data model creation and management component is the 
most critical component. This component provides all of 
the functionality required to generate and maintain the data 
models required for the first two software components. It 
includes software integrated across system configuration, 
data acquisition, and post-processing platforms. This 
component manages the incorporation of new data into the 
data models used during the data acquisition and post-
process phases. This software includes the software used to 
provide application specific training for data of interest and 
it provides the feedback path for human operators. 
The primary function of the data model/management 
component is to maintain data flow and data content 
models for incorporation into the data management 
process. The models are typically maintained in a form of 
distributed database, where new information can be 
communicated between similar systems when they are in 
contact – this approach facilitates “swarm” systems, but is 

also applicable to cases where multiple test articles “share 
their experiences.” The ultimate goal of this component is 
to provide continuous improvement of the data models 
used to validate and classify acquisition data by allowing 
acquisition and processing systems to learn from each 
other. 

7. Conclusion 

Recent development in computing performance and 
machine learning algorithms for autonomous systems are 
changing the nature of data acquisition – particularly in 
ruggedized environments.  Integrating GPGPU-accelerated 
computing and the infrastructure to support it provides a 
practical and affordable mechanism for significantly 
improving the validity and description of large data sets. In 
turn, improving the description of the acquired data can 
significantly reduce the time to process relevant data and 
thereby reduce post processing over-head. 
How much time (and money) gets saved is, of course, 
application specific. It is axiomatic that the vast majority of 
test data gets minimal, if any, attention … but how much 
processing time could be saved if one can first check to see 
if there is anything of interest to process? Finding a needle 
in a haystack is hard   so anything that shrinks the amount 
of hay is to be welcomed! 
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