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Abstract: The need for encryption throughout the 
telemetry industry has become ubiquitous. With 
commercial and governmental interests to protect, both 
data-at-rest (DAR) and data-in-transit (DIT) is now 
essential. 

However, encryption is like seat belts and crash helmets: a 
nuisance until that moment when you really need the 
protection! The challenge for effective encryption, then, is 
a management scheme for the encryption keys that imposes 
as small of an additional workload on the operations staff.  

Turnstile is an encryption scheme that combines tried, 
tested and trusted algorithms in such a way as to make 
recordings inaccessible even if an adversary has full access 
to, and control of, the test article. This allows engineers to 
configure a system with full encryption capabilities without 
having to "re-key" the unit regularly. 

By employing existing algorithms, Turnstile benefits from 
the quality and trustworthiness of those algorithms and 
certifications (such as FIPS 140 or Common Criteria). 
Turnstile can be applied both to data-at-rest and data-in-
transit applications with small variations. 

Keywords: Cyber Security, Encryption, Test Data 
Acquisition 

1. Introduction 

There are few fields of data processing, be it industrial, 
commercial or consumer, where the idea of encryption of 
data at rest is not anticipated or expected. However, even 
when the capability is present, it is frequently not engaged. 

This paper explores the reasons why data at rest encryption 
is not as widely used as one might hope or expect, and thus 
the context behind the Turnstile Encryption Scheme 
developed by Ampex Data Systems Corporation 
specifically to help address those issues and make data at 
rest encryption a less intrusive technology with the required 
levels of security and integrity. 

Note: to the extent Ampex has intellectual property rights 
in the Turnstile scheme, RAND licenses are available. 

2. The Problem Space 

An assessment of any variety of data protection approach 
fundamentally must begin with characterizing what, 
precisely, the threats are, and how a specific approach 
might acceptably address those threats. 

For data-at-rest encryption applications, the objective of 
the encryption is obvious: the technology should prevent 
unauthorized access to the stored data. But there are 

multiple scenarios in which the threat of unapproved 
individuals getting to that data might arise, and not all of 
them are applicable to every project, nor are they equally 
probable or do the result in the same consequences is the 
access is obtained. 

The unauthorized access attempt could be accidental or 
malicious, targeted, or opportunistic. In general, accidental 
access can be benign (e.g., a fellow employee getting 
access to data they should not have been able to see), but 
of course it is entirely possible that an accidental leak might 
then be subsequently exploited by a malicious actor. 

When it comes to malicious attacks, the typical perpetrator 
may be seeking competitive advantage commercially, or 
even on the national level. And that creates a necessity for 
protection both for truly sensitive data as well as for data 
that can be used to assemble information of value. 

And of course, with the general consolidation of the 
aerospace industry, the line between military and civilian 
vehicles is less distinct than it once was. This has the net 
effect of spreading attacks; for example, an unfriendly 
nation state may design an attack against what they 
perceive as a military program, but which is actually seen 
as a civilian platform by its developer, and therefore 
potentially less well protected. 

These scenarios are described below: 

2.1 Total Loss of Control. 

When data at rest protection is discussed, it is usually this 
sort of threat that people consider: an entire operational 
system, including on-board storage, is lost. 

In this situation, all the hardware and software that’s 
needed to access the data is available; the system was 
working normally prior to loss, and so the design of the data 
at rest solution, with particular focus on key retention, is 
the barrier protecting the data!  

2.2 Data at Rest in Transit.  

While this may seem like a contradiction in terms, this 
scenario covers situations where media is in transit between 
the recording system and the exploitation system. 

The key factor in this scenario, unlike the previous one is 
that the media is “bare”: to access the sensitive information, 
additional hardware will be required. With commodity 
media, this may not present an adversary with much, if any, 
of a challenge, but this situation represents the most 
prevalent one, as it includes lost, abandoned, or discarded 
media. 



 

2.3 Recorder System Information Assurance Protection. 

In order to protect the integrity of a subsystem, it is 
necessary to protect all points of entry. While it may not be 
a particularly obvious vulnerability, an adversary can use 
removable media as a mechanism to transport malware to 
a system (in much the same way as attackers use removable 
media – CDs and thumb-drives, for example – to infect 
PCs). 

This can be prevented by encrypting the media. If a host 
(i.e., the on-vehicle recorder) refuses to mount unencrypted 
storage, and the keys for the encryption are well protected, 
then only trusted parties can use that media to transfer data. 

2.4 Data Validation and Authentication. 

This scenario is the reverse of the previous one: if only 
systems that have the (protected) key can mount the media, 
then it can be asserted that the media contains valid, 
authenticated data that cannot have been forged. 

This provides a useful “chain of custody” mechanism for 
data being used for official purposes (e.g., criminal 
prosecution). 

3. Key Handling for Encryption on Test Vehicles 

With the widespread standardization of encryption 
algorithms (see below), the process of encrypting the large 
amounts of data involved (“bulk data”) is pretty much a 
solved problem. But the challenge of managing keys – 
typically loading, storing and protecting them, but also 
generating and destroying them remains; it is the handling 
of keys that is the major hurdle in designing and applying 
data-at-rest encryption. 

The simplest form of key handling is simply to provide a 
channel through which an operator is expected to send the 
keying information. This channel may be something like a 
TCP/IP socket over Ethernet, or as simple as a serial port; 
the distinguishing feature here is that the host system (i.e., 
the system trying to unlock the encrypted data-at-rest 
media) will suspend operations pending the delivery of the 
key. 

Obviously, in some way this just pushes the problem out of 
host system: instead of the host unit needing to address 
secure key storage, whatever it is that provides the keys 
through the channel must achieve the same functionality. 

It should be noted that any key handling channel may pose 
a security vulnerability of some kind; this point is usually 
addressed by either having encrypted channels (e.g., by 
using a network VPN solution) or by “wrapping” keys, i.e., 
encrypting the key itself, or both. The passwords or keys 
for those operations introduce their own key handling 
issues, but in general no new types of challenges. 

The next type of key handling is where the host system 
contacts another system on the vehicle and requests the 
keys from there (often termed the “root of trust”). This 
request would be issued every time the keys are required. 
The difference between the first scenario and this one is 
that authentication of the host to the key store will almost 
inevitably be required, as any store will need confidence 

that it’s not handing out sensitive information (the keys) to 
the wrong client! 

Again, this is another example of pushing the problem 
elsewhere, but architecturally having a centralized secure 
key store is often required or desired in an overall system-
of-systems design. 

A variation on this scheme is the use of key dongles, 
sometimes called crypto ignition keys (CIKs): a physical 
item is plugged into the host system and the keying material 
is read off the dongle. So instead of a centralized key store, 
you have a localized one. Dongles / CIKs tend to use simple 
serial protocols (SPI or I2C, for example) or USB, and are 
entirely dependent on the host system pulling the data out 
of them. 

However it is that the keys get transferred to the host 
system, two additional capabilities frequently are required: 
local storage, and destruction. 

The simplest approach is to store the key in volatile 
memory (RAM); when power fails, the key disappears. The 
complication lies in cases where it is necessary for the key 
to survive power cycles – either to recycle a potentially 
misbehaving system, or as a characteristic of the vehicle 
(e.g., switching from one generator/alternator to another) 
or as part of a normal CONOPs where a vehicle is prepared 
significantly prior to an operation, and then gets shutdown 
until start time. 

These all dictate some kind of power hold-up circuitry, or 
use of non-volatile memory, or both. 

For power hold-up, the obvious issue is the duration 
required. “Short” durations can use supercapacitors, which 
have the significant benefit that they will get exhausted, at 
which point there will be no power to preserve the sensitive 
keying information, so it will evaporate as soon as power 
fails. 

For longer durations, supercapacitors become impractical: 
while it’s certainly possible to build an arbitrarily large 
capacitor bank, the process of charging complicates the 
design: one must limit inrush current to within acceptable 
bounds, and additionally calculate the relationship between 
charge time and hold-up capability. 

The alternative to supercapacitors is of course a battery. 
Even surmounting the (legitimate) bias against batteries for 
maintenance and safety reasons, batteries add an additional 
complication: an active watchdog of some kind is required 
to ensure that the key doesn’t last too long, because unless 
one’s using rechargeable cells (with an even stronger 
legitimate bias against), the battery has to be sized to 
support the application across multiple power failures; 
once the battery is exhausted, the system is impaired! 

Of course, the challenge can be made easier by splitting the 
recording subsystem in two: the recorder proper, and a 
much smaller co-processor that acts as a key store; so long 
as power is maintained to the key store, the keying 
information can be preserved without having to power the 
whole recorder. Typical key store systems might be based 
on a microcontroller device, using common chip-to-chip 
interconnects like I2C, RS-232/422, or USB. 



 

The alternative to storing keying information in volatile 
memory is, of course, to use non-volatile storage. The 
obvious problem with this is that the if the recording device 
fails (e.g., is involved in a crash) then the non-volatile 
memory will retain everything needed to extract the 
encrypted, protected information, thereby defeating the 
whole purpose of encryption in the first place! 

To avoid this problem, the obvious solution is to use 
“secure” storage devices, like Trusted Platform Modules 
(TPM). The concept behind these devices is that they are 
secure crypto-processors that help with actions such as 
generating, storing, and limiting the use of cryptographic 
keys. Many TPMs include multiple physical security 
mechanisms to make it tamper resistant, and malicious 
software is unable to tamper with the security functions of 
the TPM. 

Unfortunately, the drawback to the use of these sorts of 
coprocessor device is that they have to be responsive to the 
host system, so that when the host starts up, it can extract 
the necessary keys to unlock the media. The “risk window” 
can be narrowed by time-based criteria, under which the 
crypto-processor purges itself once a given interval has 
elapsed. Of course, if the reference time is derived from a 
regular system clock, that can be defeated by simply 
resetting the date and time, so a secure system would 
typically use a non-resettable counter circuit to trigger the 
key purge when a particular value is reached. 

In summary, protecting keys so that they survive power 
cycles but are not vulnerable to exfiltration in such a way 
as to defeat the purpose of encryption is a hard challenge to 
solve. It would be better, then, to have a sort of “write only” 
storage device, where the data cannot be recovered in the 
field, only back at base! 

4. Encryption Technology 

Encryption can be broken into two types of algorithm: 
those which use the same key for both reading and writing 
(“symmetric” algorithms), and those that use different keys 
to encrypt and decrypt (“asymmetric” algorithms). 

For symmetric encryption, also known as “block ciphers”, 
as of 2023 this is almost exclusively the Advanced 
Encryption Standard (AES), codified by FIPS 197 [1]. 

The reasons for this near-universal adoption are clear: AES 
is a published algorithm developed the Belgian 
cryptographers Vincent Rijmen and Joan Daemen, which 
was adopted by the US National Institute for Science and 
Technology (NIST) in 2001. As such, it has been validated 
by the global community’s scrutiny of the algorithm’s 
mathematical underpinnings, and a given implementation 
should be certified by the NIST Cryptographic Algorithm 
Validation Program (CAVP) and is therefore “correct”. 

 

 
1 The standard is generally known as FIPS 140. The number after 
the dash is the edition number. FIPS 140-3 superseded FIPS 140-2 
in March 2019. 

For asymmetric encryption (those using different encrypt 
and decrypt keys), there’s a split between the venerable 
RSA algorithm (named after its creators, Messrs. Rivest, 
Shamir, and Adleman), and Elliptical Curve Cryptography 
(ECC); while the mathematics underpinning the two are 
very different, they can be considered functionally 
interchangeable in most cases. These too are codified by 
standards (FIPS 186 “Digital Signature Standard” [2]) and 
validated by the global community. Formal NIST 
certification tends to be wrapped up with the functionality 
for which these technologies are most often used (“key 
exchange” and identity verification), but a broader-scope 
certification program like FIPS 1401 “Security 
Requirements for Cryptographic Modules” [3] will also 
certify the asymmetric algorithm(s). 

The advantage of asymmetric keys for test vehicle 
applications (and others) is clear: by loading only the 
“encryption key” (and not the “decryption key”) on board, 
the system cannot recover data that has been written. 
However, there are challenges… 

5. Encryption in Operation 

Whichever type of encryption (symmetric or asymmetric) 
is used, the basic operations are the same: chunks of data 
are fed into the algorithm and the enciphered output 
emerges. However, the size of those chunks is limited: for 
AES the chunks are always 16 bytes (128 bits) long, while 
for the asymmetric variety the chunk length to be encrypted 
should not exceed the key size. 

This leads to what can be referred to as the “repeating data 
issue”: encrypting two chunks with the same key will result 
in the same output. And since the chunks are quite small, 
the situation shown in Figure 1 will inevitably occur. 

Figure 1 shows two AES “modes” defined by NIST as 
SP800-38 “Recommendation for Block Cipher Modes of 
Operation” [4]; the first, Electronic Code Book (ECB) 
mode, simply repeatedly encrypts each 16-byte block with 
the same key, and is obviously unsuited to plaintext with 

Figure 1 Repeating Block Issue 



 

repeating patterns. The second, Counter (CTR) mode, splits 
the message into a numbered succession of blocks, and 
merges the encrypted version of the plaintext with an 
encrypted version of the numbered counter, and in so doing 
changes the effective key being used to encrypt each block 
of the plaintext. 

An alternative to Counter mode, the Galois/Counter mode 
(defined by NIST SP800-38D [5]) can be used, which adds 
a extra layer of protection against corruption of the 
recording or tampering, although it should be noted that 
tampering with an encrypted file can often be easily 
detected anyway, as the alternations can only be made 
“blind” and so will likely not align with e.g., packet 
boundaries in the encrypted data. 

Unfortunately, the approach of using these sorts of modes 
to vary the “effective key” for each block cannot work for 
asymmetric keys, as each potential “effective encryption 
key” must have a related decryption key, and the 
relationship between the two is, by definition, 
mathematically “extremely hard” to derive. 

To summarize, then, symmetric algorithms (i.e., AES) with 
appropriate “modes” work well large volumes of data but 
suffer from the problem that if a system has the encryption 
key, they also have the key needed to decrypt. And on the 
other hand, while asymmetric keys are an elegant solution 
to the key handling challenges, they are not much use for 
applications where more than a few bytes must be 
encrypted. 

6. Turnstile 

The concept behind the Turnstile Encryption System is to 
use both a symmetric and an asymmetric algorithm in 
concert. 

Turnstile is designed for file or stream encryption, as 
opposed to “full disk” encryption. This permits the use of 
multiple keys and algorithms. Turnstile is also not suited to 
applications with huge numbers of files or “read-mostly” 
systems like NAS devices, since (a) each file (or small 
group of files) is separately encrypted, and (b) by design, 
Turnstile prevents the reading of a file. 

Turnstile doesn’t implement the encryption operations per 
se, relying instead on other implementations, which allows 
the use of FIPS 140 and/or Common Criteria certified 
solutions. Instead, Turnstile manages creates and 
Ephemeral File Encryption Keys (EFEKs), which are then 
used for bulk data encryption. In other words, it could be 
argued that Turnstile operates above FIPS 140, without 
reducing the “goodness” that a FIPS 140 implementation 
provides. 

That bulk data encryption process will be (typically) be 
performed by AES with a suitable mode such as Counter 
mode using an EFEK. The EFEK is then encrypted with an 
asymmetric algorithm (typically ECC, but possibly RSA), 
and stored alongside the bulk data files. 

Turnstile functions by generating a key pair for use with 
the asymmetric algorithm. One half of the pair, dubbed the 
“write key” or the “public key” (after it’s similarity to 

Public Key Infrastructure schemes) is transferred to the test 
article, while the other half, the “read” or “private” key, is 
retained securely, for example in the control room. The 
“write” key is not particularly sensitive: an adversary 
posing that key could possibly create forged data files but 
could not manipulate or access the data in authentic ones. 

6.1 Random Number Generation. 

The strength of the encryption on the bulk data files comes 
down to the strength of the EFEK, so it is essential that 
Turnstile use a robust and well-understood approach to the 
EFEK creation process. As with all good keys, the EFEKs 
are random bit strings (typically, a 256 bit string of random 
“0”s and “1”s). 

Perhaps paradoxically, cryptographically random bit 
generation (RBG) usually involves two elements: a source 
of entropy, often referred to as a True Random Number 
Generator (TRNG) and a Deterministic Random Bit 
Generator (DRBG), also known as pseudo-random number 
generators. 

The TRNGs typically employed by encryption systems are 
typically implemented by electronics phenomena, such as 
thermal noise. 

One might ask why the DRBG is required if one has a 
TRNG? The simple answer is that TRNG implementations 
tend to be limited in the number of random bits per second 
that can be produced. The use of a DRBG thus “smooths” 
the output of the TRNG so that bursts of requests for 
random numbers (by applications, in this case Turnstile) 
don’t overload the TRNG and skew the randomness of the 
output. It is also true that proving the randomness of a 
TRNG across all potential operating conditions is hard, so 
using a DRBG provides slightly greater confidence across 
boundary conditions, such as temperature or power supply 
brownouts. 

The approved methods for the use of entropy sources and 
the DRBG algorithms are codified in NIST SP 800-90A 
Rev.1 “Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators” [6], SP 800-
90B “Recommendation for the Entropy Sources Used for 
Random Bit Generation” [7] and the draft SP 800-90C 
“Recommendation for Random Bit Generator (RBG) 
Constructions (3rd Draft)” [8]. 

6.2 EFEK Storage. 

Once the EFEK has been generated, it is encrypted using 
the “write” / “private” key. Typically, there will be some 
additional data encrypted alongside the EFEK, which 
provides different types of assurance, such as detecting 
when the system is booted in order to flag unexpected 
resets that might indicate tampering. 

The encrypted EFEK and that additional data, known 
collectively as the Encrypted Key Control Block (EKCB) 
is then stored alongside the bulk data file that is encrypted 
with that EFEK. 

The method, and indeed the location, by which the EKCB 
is stored is unimportant: it could be prepended to the bulk 
data file, it could be written in a separate “sidecar” file, 



 

saved in a database or even written to separate media. The 
only requirement is that the EKCB data be associated with 
the bulk data file, which is straightforward with prepending 
the data, but requires a little extra work with the other 
methods. 

Once the bulk data file is completed (i.e., when the file is 
closed), the EFEK is purged for memory. The only place it 
can be obtained is now from the EKCB. 

For best security, the system will periodically close a 
recording file, discard the EFEK, and create a new file with 
a new EFEK and EKCB. 

6.3 Decrypting the Bulk Data Files. 

Extracting the data from the recording files requires first 
recovering the EFEK from the EKCB. This requires the 
“read” or “private” key. 

Since that key is simply not loaded on to the test article, an 
adversary taking control of the recording system just 
doesn’t have the necessary pieces to decrypt the data files. 
As long as the asymmetric algorithm and the read key are 
secure, the bulk data is secure. 

6.4 Turnstile Applications for Streaming. 

Up to this point, this paper has been considering the 
challenges of encryption mostly from a data-at-rest 
perspective. However, Turnstile can be equally relevant to 
streaming telemetry. 

The process of generating the asymmetric key pair and the 
EFEKs is identical to that used for data-at-rest applications, 
as is the concept of the EKCB. Obviously, instead of 
writing files encrypted with the EFEK, the telemetry 
stream is encrypted and transmitted, but otherwise the 
design mirrors the data-at-rest approach. 

The difference lies in what the test article does with the 
EKCB: rather than storing it, it must be transmitted 
“alongside” the streaming data. This can be accomplished 
using either a packetization scheme on the data link, using 
a header bit to signify whether the data is an EKCB or 
encrypted data, or an out-of-band channel operating in 
parallel. 

7. Conclusion 

Key handling for data encryption is a hard problem to solve 
when controlled key persistence is required. Turnstile 
simplifies the process by creating a scheme in which the 
only keying data stored on a vehicle is not sensitive, 
because it cannot be used to decrypt previously written 
data. 

Turnstile doesn’t work for all applications, but for video 
and instrumentation recordings (“Chapter 10” and the like), 
it provides an elegant solution for secure protection of 
sensitive data. 
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9. Glossary 

AES: Advanced Encryption Standard 
CAVP: Cryptographic Algorithm Validation Program 
CIK: Crypto Ignition Key 
CMVP: Cryptographic Module Verification Program 
CTR: Counter 
DAR: Data at Rest 
DIT: Data in Transit 
DRBG: Deterministic Random Bit Generation 
ECB: Electronic Code Book 
ECC: Elliptical Curve Cryptography 
EFEK: Ephemeral File Encryption Key 
EKCB: Encrypted Key Control Block 
FIPS: Federal Information Processing Standard 
I2C: Inter-Integrated Circuit 
NIST: National Institute for Science and Technology 
RAM: Random Access Memory 
RAND: Reasonable and Non-Discriminatory 
RBG: Random Bit Generator 
SPI: Serial Peripheral Interface 
TPM: Trusted Platform Modules 
TRNG: True Random Number Generator 
USB: Universal Serial Bus 
VPN: Virtual Private Network 
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